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Abstract

Sequential gene silencing in zebrafish embryos has been achieved using caged morpholino 

oligonucleotides with spectrally distinct triggers. Using these optochemical tools, the genetic 

interactions that dynamically regulate mesoderm patterning have been examined.
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Photoactivatable molecules are versatile probes of cellular and organismal physiology, as 

they allow biochemical control with spatiotemporal precision.[1] We and others have 

developed caged morpholino oligonucleotides (cMOs) that can perturb targeted RNAs in 
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vivo,[2–8] and these optochemical tools have been used to interrogate the functions of 

individual genes, such as the zebrafish transcription factors no tail-a (ntla) and ets variant 

gene 2 (etv2).[9, 10] Morpholino (MO) technologies that can similarly decipher the 

combinatorial actions of two or more genes would extend this approach to more complex 

biological systems; however, current cMOs have overlapping spectral properties that 

preclude differential control. We report here the development of spectrally differentiated 

cMOs that enable sequential gene silencing via wavelength-selective illumination. We 

demonstrate the efficacy of these probes in zebrafish embryos and use them to examine the 

mechanisms of mesoderm patterning.

Our approach builds upon our previous studies of cyclic cMOs in zebrafish models.[7] 

Antisense MOs are typically 25 bases in length and designed to complement splicing or 

translational start sites in targeted RNAs. The resulting MO/RNA duplexes have limited 

tolerance for backbone curvature, and MO activity therefore can be caged by cyclizing the 

oligonucleotide with a photocleavable linker. Illumination then re-linearizes the antisense 

reagent and restores its function. MO cyclization has certain advantages over earlier caging 

methodologies, which utilize hairpin structures,[2, 3] MO/RNA or MO/MO duplexes,[4, 6] or 

modified bases:[5] cyclic cMOs are easy to synthesize, rely on a single optically gated 

trigger, and obviate the need for auxiliary oligonucleotides.

Due to their modular design, cyclic cMOs can be prepared with a variety of linkers, and our 

first-generation reagents utilized 4,5-dimethoxy-2-nitrobenzyl (DMNB)-based tethers, 

which are readily cleaved by 365-nm light. The experimental scope of these reagents would 

be significantly expanded if cMOs targeting distinct RNA sequences could be differentially 

photoactivated. Wavelength-selective photo-deprotection of thiols has been achieved using 

2-nitrobenzyl (NB) and ([7-bis(carboxymethyl)amino]coumarin-4-yl)methyl (BCMACM) 

chromophores,[11] and cyclic guanosine monophosphate (cGMP) and cyclic adenosine 

monophosphate (cAMP) signalling have been separately regulated using NB-caged protein 

kinase G and BCMACM-caged cAMP, respectively.[12] In addition, 4-carboxymethoxy-5,7-

dinitroindolinyl-caged glutamate and BCMACM-caged γ-aminobutyric acid have been used 

to achieve bimodal control of each neurotransmitter,[13] and phosphoamino acids have been 

selectively caged with 1-(2-nitrophenyl)ethyl and [7-(diethylamino)coumarin-4-yl]methyl 

(DEACM) groups.[14] We therefore envisioned that NB- and DEACM-based linkers could 

be used to develop wavelength-selective cMOs, allowing the sequential inactivation of two 

genes in whole organisms (Figure 1).

We first prepared a NB-containing linker with N-hydroxysuccinimide ester and 

chloroacetamide groups, which can react with 5′ amine- and 3′ disulfide-functionalized MOs 

to generate macrocyclic oligonucleotides. In comparison to our previous DMNB-based 

tether, this photocleavable linker has a blue-shifted absorption maximum, minimizing 

photolysis at wavelengths greater than 400 nm. The bifunctional reagent was synthesized 

from commercially available 1-(2-nitrophenyl)ethane-1,2-diol (1) in eight steps (Scheme 1). 

The primary alcohol of 1 was tosylated and reacted with methylamine, and the resulting 1,2-

amino alcohol 2 was condensed with methyladipoyl chloride to yield the ester 3. The 

secondary alcohol in 3 was then conjugated with ethylenediamine through 1,1-

carbonyldiimidazole (CDI)-mediated activation, and the primary amine was capped with 2-
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chloroacetyl chloride to yield compound 4. Methyl ester hydrolysis and N-

hydroxysuccinimide coupling subsequently provided the fully functionalized NB linker 5.

We next prepared two DEACM-based linkers with differing absorption properties. The 

addition of electron-donating groups to the C7 position of the coumarin ring induces a 

bathochromic shift, and DEACM protecting groups are efficiently photolyzed at 

wavelengths over 400 nm.[15] We therefore synthesized a DEACM-containing linker in ten 

steps (Scheme 2), starting with the oxidation of commercially available 7-diethylamino-4-

methylcoumarin (6). Allylation of the aldehyde 7 provided the secondary alcohol 8, which 

was then t-butyldimethylsilyl (TBDMS)-protected and subjected to hydroboration and 

oxidation to afford the primary alcohol 9. Activation with CDI followed by treatment with 

ethylene-diamine and 2-chloroacetyl chloride yielded the intermediate 10. The final 

DEACM linker 11 was then obtained after alcohol deprotection and N,N′-disuccinimidyl 

carbonate (DSC) coupling.

Since recent studies have shown that malononitrile functionalization further red-shifts the 

DEACM absorption profile,[16] we also synthesized the corresponding 

diethylaminocoumarylidenemalononitrilemethyl (DEACM-MN)-containing linker in eight 

steps (Scheme 3). Aldehyde 7 was reacted with nitromethane in the presence of N,N,N′,N′-

tetramethylethylenediamine (TMEDA) to afford the nitroalcohol 12. The TBDMS-protected 

alcohol was converted into the corresponding thiocoumarin 13 with Lawesson’s reagent, and 

the dicyanocoumarin 14 was obtained by Ag(I)-promoted malononitrile condensation. The 

nitro group was subsequently reduced with zinc and acetic acid, and the resulting amine was 

coupled to 6-(2-chloroacetamido)-hexanoic acid to yield the intermediate 15. Alcohol 

deprotection and DSC coupling then provided the final DEACM-MN linker 16.

We used the NB, DEACM, and DEACM-MN bifunctional linkers to prepare cMOs, using 

procedures analogous to those we previously developed for DMNB-caged reagents (Scheme 

4).[7] Each N-hydroxysuccinimide ester- and chloroacetamide-functionalized tether was 

coupled to a ntla-targeting MO (5′-GACTTGAGGCAGACATATTTCCGAT-3′; anti-start 

codon underlined) modified with a 5′ amine and 3′ disulfide. The corresponding MO-linker 

amides were treated with immobilized triscarboxyethylphosphine (TCEP) to reduce the 

terminal disulfides, and the resulting thiols spontaneously reacted with the linker 

chloroacetamides to form the desired macrocycles. Any remaining linear MOs were 

removed from the reaction mixtures using iodoacetyl-functionalized resin, and the cyclic 

cMOs were purified by size-exclusion chromatography.

With these spectrally distinct cMOs in hand, we evaluated their activities in vivo. Ntla is a 

T-box transcription factor required for the differentiation of axial mesoderm into notochord 

cells (Figure 2a), and ntla mutants/morphants exhibit re-specification of notochord 

progenitors into medial floor plate cells, loss of posterior mesoderm, and mispatterned 

somites.[17, 18] We individually microinjected the DMNB, NB, DEACM, and DEACM-MN 

cyclic ntla cMOs into zebrafish zygotes (115 fmol/embryo for all reagents except for the 

DEACM-MN cMO; see below) and either briefly illuminated the embryos at 3.5 hours post 

fertilization (hpf) with 365-, 405-, or 470-nm light or maintained them in the dark. The 

zebrafish were then scored at 24 hpf for ntla loss-of-function phenotypes as previously 
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described (Figure 2b).[3, 7] As expected, the DMNB and NB cyclic ntla cMOs were 

efficiently uncaged by 365-nm light, inducing strong ntla morphant phenotypes in 89% and 

86% of the embryos injected with these respective reagents (Figure 2c). The DMNB cMO 

was more sensitive to 405-nm light; 36% of the embryos in this cohort had partial 

mesodermal defects, in comparison to only 14% of the NB cMO-injected, 405-nm-irradiated 

zebrafish. DMNB and NB cMO activation was even less efficient with 470-nm light, with 

86% and 91% of the embryos developing normally under these respective conditions.

In contrast to these observations, the DEACM and DEACM-MN cyclic ntla cMOs were 

highly responsive to 405- and 470-nm irradiation (Figure 2c). For example, 95% of the 

embryos injected with either reagent had morphological phenotypes consistent with a 

complete loss of ntla function upon 470-nm illumination. The DEACM and DEACM-MN 

cMOs, however, were only partially activated by 365-nm light, resulting in a range of 

mesodermal deficits. The DEACM-MN cMO exhibited more dark activity relative to that of 

its DEACM counterpart, perhaps due to reduced in vivo stability. A lower embryonic dose 

of the malononitrile-containing reagent (87 fmol) was therefore required to minimize basal 

gene silencing.

Taken together, our results suggest that NB and DEACM cyclic cMOs could be used in 

combination to sequentially silence genes. To investigate this possibility, we focused on two 

additional regulators of zebrafish mesoderm development, the T-box transcription factor 

Spadetail (Spt/Tbx16) and the homeobox-containing repressor Floating head (Flh). Spt 

controls the differentiation of non-axial mesoderm, and spt null zebrafish lack trunk 

somites.[19, 20] Muscle precursors in these mutants are mislocalized to the tailbud, leading to 

the hallmark “spade tail” morphology. Spt function is largely restricted to the adaxial and 

paraxial mesoderm during gastrulation and somitogenesis, and its transcription within axial 

tissues is inhibited by Flh (Figure 3a).[21, 22] Accordingly, flh mutants inappropriately 

express spt within the midline, leading to the re-specification of notochord progenitors into 

muscle.[23] The hierarchical relationship between Spt and Flh provides a convenient system 

for interrogating genetic interactions; spt mutants have reduced myogenesis, flh exhibit 

ectopic axial muscle, and spt/flh double mutants phenocopy spt loss-of-function defects.[21]

We first recapitulated these phenotypes using conventional MOs targeting each transcription 

factor (spt MO: 5′-CTCTGATAGCCTGCATTATTTAGCC-3′; flh MO: 5′-

GGGAATCTGCATGGCGTCTGTTTAG-3′). In comparison to wildtype zebrafish, spt 

morphants (50 fmol/embryo) were deficient in adaxial and paraxial muscle by 12 hpf, as 

determined by diminished expression of myogenic differentiation 1 (myod1) (Figure 3b–

c).[24] Zebrafish injected with the flh MO (100 fmol/embryo) exhibited axial myod1-positive 

cells, and spt/flh double morphants had myod1 expression patterns similar to that of embryos 

injected with the spt MO alone. We next pursued the combinatorial control of spt and flh 

function using spectrally differentiated cMOs. We synthesized a NB cyclic spt cMO and a 

DEACM cyclic flh cMO as described above and injected the reagents into zebrafish zygotes 

(50 and 100 fmol/embryo, respectively), either alone or in combination. The resulting 

embryos were then either briefly irradiated with 365-, 405-, or 470-nm light at 3.5 hpf or 

cultured in the dark throughout their development, and we stained the embryos for myod1 

transcripts at 12 hpf. Zebrafish injected with the NB spt cMO alone had dramatically 
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reduced adaxial and paraxial myogenesis upon 365-nm illumination (100% penetrance) but 

minimal defects upon exposure to 405- or 470-nm light (19% and 11%, respectively) 

(Figure 3d). Conversely, about 90% of embryos injected with the DEACM flh cMO had 

ectopic axial muscle after 405- or 470-nm irradiation, with 365-nm light resulting in a less 

penetrant phenotype. To confirm that these spectral differences can be exploited to achieve 

sequential gene knockdowns, we co-injected the NB spt and DEACM flh cMOs into 

zebrafish zygotes and first irradiated the embryos at 3.5 hpf with 405-nm or 470-nm light. A 

subset of the animals was then exposed to 365-nm light, and the resulting myod1 expression 

was scored at 12 hpf (Figure 3d). Both 405- and 470-nm irradiation selectively activated the 

DEACM flh cMO, as shown by axial myod1 expression (75% and 83%, respectively). As 

expected, subsequent 365-nm irradiation restored the spt loss-of-function phenotype (100% 

and 93%, respectively). Thus, the NB and DEACM cMOs enabled wavelength-selective 

control of spt and flh function in zebrafish embryos.

To conclude our studies, we utilized these spectrally differentiated cMOs to examine the 

timing by which ectopic spt function induces axial muscle development in flh-deficient 

embryos. We co-injected the NB spt and DEACM flh cMOs into zebrafish zygotes and 

irradiated the embryos at 3.5 hpf with 405-nm or 470-nm light to inhibit flh function as 

before. We then activated the spt cMO with 365-nm light at time points ranging from 5 to 7 

hpf. Light-induced spt silencing at 5 hpf resulted in nearly complete loss of adaxial and 

paraxial myod1 transcription (100% and 86% penetrance for the 405- and 470-nm flh cMO 

photoactivation protocols, respectively) (Figure 4). In contrast, spt cMO photolysis at 7 hpf 

predominantly yielded embryos with flh morphant phenotypes (67% for both flh cMO 

uncaging protocols). Our time-course studies therefore indicate that Spt acts during 

gastrulation (6–9 hpf) in flh mutants to redirect notochord precursors toward muscle cell 

fates. This action precedes axial myod1 expression in flh mutants, which is evident by the 3- 

to 5-somite stage (10–11 hpf).[23]

In summary, we have achieved the first sequential inactivation of organismal gene function 

using reverse-genetic chemical probes. Our studies demonstrate that NB- and DEACM-

based cyclic cMOs can be differentially activated by 365- and 405/470-nm light, expanding 

the scope of caged antisense technologies. Such synthetic tools complement TALEN 

(transcription activator-like effector nucleases) and CRISPR (clustered regularly interspaced 

short palindromic repeats)/Cas genome-editing technologies, which have been successfully 

employed in zebrafish.[25, 26] Cyclic cMOs can be synthesized and applied within days, 

allowing rapid loss-of-function studies with nearly complete phenotypic penetrance and a 

high degree of spatial, temporal, and dosage control. In comparison, genetic approaches can 

require multiple animal generations for full implementation, have more limited 

conditionality, and are subject to Mendelian phenotypic frequencies.

We anticipate that these optochemical tools will be valuable probes of the genetic 

interactions that dynamically regulate tissue formation and function. The commercial 

availability of 5′ amine- and 3′ disulfide-functionalized MOs and the ease with which they 

can be cyclized should make this chemical approach widely available to the scientific 

community. Our MO caging strategy is also compatible with a variety of linkers, facilitating 

the implementation of other chromophores. As new caging groups with divergent spectral 
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properties continue to be developed,[27] it is likely that future cMO technologies will 

eventually enable the orthogonal photoregulation of three or more genes.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Sequential activation of cyclic cMOs using different wavelengths of light. Structures of 

spectrally differentiated caging groups are shown.
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Figure 2. 
Comparison of NB, DMNB, DEACM, and DEACM-MN ntla cMOs activities in response to 

different irradiation wavelengths. a) Schematic representation of ntla-expressing cells in a 2-

somite-stage zebrafish (dorsal posterior view). b) Classification of ntla loss-of-function 

phenotypes (I = most severe, IV = wildtype). 24-hpf embryos are shown (lateral view, 

anterior left). Scale bar: 200 μm. c) Phenotypic distributions for embryos injected with the 

indicated reagents and either cultured in the dark or globally irradiated with 365-, 405-, or 

470-nm light at 3.5 hpf. No toxicity was observed with any of the cMO or irradiation 

conditions.
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Figure 3. 
Combinatorial regulation of spt and flh activity using wavelength-selective cMOs. a) 

Schematic representation of spt- and flh-expressing cells in a 2-somite-stage zebrafish 

embryo (dorsal posterior view). Genetic interactions between ntla, flh, and spt are also 

shown. b) Classification of myod1 expression patterns associated with wildtype (adaxial/

paraxial), flh null (axial/paraxial), and spt null (partial adaxial) phenotypes. 12-hpf embryos 

are shown (dorsal view, anterior top). Scale bar: 200 μm. c) Distribution of myod1 

expression patterns in embryos injected with the indicated MOs and either cultured in the 

dark or globally irradiated with 365-, 405-, or 470-nm light at 3.5 hpf. Phenotypes were 

scored at 12 hpf. d) Corresponding phenotypic distributions for embryos subjected to the 

indicated cMOs and irradiation conditions. No toxicity was observed with any of these 

treatments.
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Figure 4. 
Sequential silencing of flh and spt using spectrally differentiated cMOs. Distribution of 

myod1 expression patterns for embryos injected with NB spt and DEACM flh cMOs and 

subjected to dual-wavelength irradiation at different time points. Phenotypes were scored as 

described in Figure 3.
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Scheme 1. 
NB linker synthesis. a) TsCl, pyridine, 99%; b) methylamine, THF, 91%; c) methyladipoyl 

chloride, DIPEA, CH2Cl2, 41%; d) CDI, CH2Cl2; e) ethylenediamine, CH2Cl2; f) 2-

chloroacetyl chloride, Et3N, CH2Cl2, 65% over 3 steps; g) LiOH, THF, H2O; h) DSC, 

pyridine, CH3CN, 62% over 2 steps.
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Scheme 2. 
DEACM linker synthesis. a) SeO2, dioxane, 42%; allyltributylstannane, ZnCl2, CH3CN/

H2O, 83%; c) TBDMSCl, imidazole, DMF, 97%; d) BH3-Me2S, THF; e) NaOH, H2O2, 

49% over 2 steps; f) CDI, CH2Cl2; g) ethylenediamine, CH2Cl2; h) 2-chloroacetyl chloride, 

DIPEA, CH2Cl2, 65% over 3 steps; i) TBAF, THF, 44%; j) DSC, DMAP, CH2Cl2, 82%.
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Scheme 3. 
DEACM-MN linker synthesis. a) CH3NO2, TMEDA, THF, 69%; b) TBDMSCl, imidazole, 

DMF, 84%; c) Lawesson’s reagent, PhCH3, 79%; d) malononitrile, AgNO3, Et3N, CH3CN, 

89%; e) Zn, HOAc, 70%; f) 6-(2-chloroacetamide)hexanoic acid, HATU, DIPEA, THF, 

44%; g) TBAF, THF; h) DSC, DIPEA, THF, 32% over 2 steps.
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Scheme 4. 
Synthesis of spectrally differentiated cyclic cMOs. a) Linker 5, 11, or 16, 0.1 M Na2B4O7, 

pH 8.5, DMSO; b) immobilized TCEP, 0.1 M Tris-HCl, pH 8.4, 35–81% over 2 steps.
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